Project iSwitchPi

Intelligent Power Switch fiir Raspberry Pi

Make working with the Pi easy.

®

Inhaltsverzeichnis

Lo ADSEEACE..cciuiiiuiesensaenssissesssesssessaesssesssesssssssessesss 4
2. FArStIAEas coueievuienseiessniiisuiinsniinsnissensssensssesosssssssssosssssssnssssasssssssssssssssssssssssssssessssossesessssessaseses 4
2.1 MArKet REVIEW ..ceueuitiiiititee ettt ettt b bt bbb b st e et e e et et et eneeneeae e 4
2.2 FINAINES wovvooeeeeeeeeeeeeeeeeee oo eeee s seeseseeeeessssssesseseeeee e eserereerereeeeeeeee 5
Be OVEIWIEW .uueiieiietiiiietiiisnetesisetsssssstsssssstsessssesesssssssssssesssssssessssssssssssssssssssessssssesessssssssssssssssssans 5
. Problem Statement. .. ccceicreicrerireiisenssenssenisenssenssenissnsssssssisssns 1
4.1 Additional ReEQUIFEMENTS......c.cvcuiiiiiiiiiiiiiiiiccie s 1
4.2 State-DIAGIAIM ...c.oiiiiiiiiiii bbb 2
4.3 Input and Output of the MAChine ...c.ccvveveuioiririeiiinrieicicc ettt et s e ee 2
4.4 State DIAGIAIM ...coooueuiiiiiiciiiiietcc ettt 3
4.5 Activities UPON €NEEIINE @ STATE ...c.vuvviuiriiiiieiiiiteie ittt s 3
5. Component A: EleCtronicCs c..cuceeerensuesessensuissensensiississinsnissessensssssessessssssesssssssssessessassasssessases 3
5.1 SCREIMA. ..ttt 4
5.2 Printed Circuit Boardccoeoiiiiiiiiinieiiieiicncnc ettt ettt 4
5.3 PUlS GEREIATOL. ...ciiiiiiieieici ettt ettt 5
5.4 Communication between Piand ElectroniC.......oceoerierienieiieirieiiiecse sttt e 5
5.5 C-PrOZIAM FOr ATHIYAL ceeeeovereeseeeeeeeeseseseeeeesessesseesesessssseessesesessseessseeesesseeessesesseseeeesssessseeeseesessee 6
6. Component B: Python Shutdown Script.......cceueveiensenseesensensiennnsnnsnesensnnsncsessnnssessens 7
7. GPIO Pins USEd ccueieeierurirnissurssensssnssensssnsssnsssnsssnsses 7
8. Install iSWItChPi.cuuiiicuiiiriiisiiisiniissenessniossnnosssissssnssssssssssssssssossssossssossssossssossasssssssssassssssssssssoses 8
B RN 1= T T 8
10. Programming the ATHNY4A4 cc.covueeeereisuisinsensuessensensuessessesssissessessssssessessssssessesssessesssssssssesssssans 8
11. Components on the PCBucuiiiiniinniisinninniinnnininniiiinisisisisisimsisissssss 9
12, CoNCIUSION . cuuiiruiirriinriesissinssiesessstssstssatsssssssessssssesssess 10
13, UPAALeS.cieinreninseisuesnnsensnessensinsnissesesssessessesssessessessssssessessssssesessasssessessassasssessessasssessessasssssaes 10
L 5 Y 10
15, ACACKMENTS cuveeuiiruirnriisinsinsiesissississesssesssessstsssesssesssssssesssessess 11
15.1 Example Scripts filr ISWIEChPI. ...oivviieiiiiicicirinecceec e 11
15.2 Parts List ISWITCRP . veveuiieiiietiietirtc ettt ettt 11

| T O Y [N3 72 el oY s TSRO TUR SRRSO 13

1. Abstract

A Raspberry Pi does not have an On/Off switch and there is no easy way to shutdown the Pi while keeping the
filesystem intact.

This Intelligent Power Switch brings a clever solution to this problem: Power-On the Pi by pressing a pushbutton
and also properly Power-Off the Pi with another press on the same button.The intelligence is provided by a program
running in an AVR MCU ATtiny44. This C-program implements a Finite State Machine in the MCU.

A small Python script is running in the Pi itself.
Just one single GPIO-Pin is used for two-way communication between the Pi and the iSwitchPi board.

The iSwitchPi board additionally provides a square wave output with variable frequeny that can be used to trigger
interrupts on the Pi.

This project description presents an elegant solution for the problem of switching the Pi on and off. The goal was to
have a small pc board whose functionality can be described as follows:

J one pushbutton only for power on and power off

o form factor as a Raspberry hat for eas of use

. only one communication line to the pi - in other words. only one GIPO pin used on the Pi

o awarness of the Pi‘s status (running or not running)

J only one communication line to and from the pi - in other words. only one GIPO pin used on the Pi

o square signal output capability with variable/defined frequency to be used as a timer interrupt for the Pi
. later versions usable on a breadboard.

The iSwitchPi Board

2. First Ideas

2.1 Market Review

There are a number of electronic add-ons to be found on the market - they all try (and succeed) to solve the prob-

Intelligent Power Switch Seite 4

lem of power up/down the Pi. All of them consist of two components:
. a small pcb board with connections for pushbutton, 5 Volt in, 5 Volt out, GPIO to Pi

J a small shell script or Python script running in the Pi

| found the following products and tried some of them in my own lab. None of the has an square wave generator.

. Pi-Supply from the English Company Pi-Supply. This add-on uses two pushbuttons for power on and power
off, respectively. It uses two GPIO pins on the Pi. Works well.

J Pi-Shutdown button as decribed on Instructables. This solution uses an embedded controller ATtiny13/85.
o ATX-Raspi from LowPowerlLab. This product is close to what i had in mind.
. ykrud from Yepkit. This product also uses an embedded controller. Seems very ok but uses 2 GPIO pins.

2.2 Findings

That review showed that | needed to go back to the drawing board to start finding my own solution which is based
on ideas that were used in some of the products. | decided to use an ATtiny44 microcontroller.

. There will be an electronic component (pcb board) with all the neccesary componentes and the MCU. Two
different board will be made: a small board to be used on a breadboard and another (almost) hat-compliant
board to be stacked on a Pi. Only ONE GPIO-Pin will be used for communication.

. There will also be a Python script that is started in the Pi at boot time.

3. Overwiew

The add-on will consist of pcb in the form of a Pi hat. At the heart will work a microcontroller ATtiny44 for which |
developed a C program that implements the necessary logic. This is called the iSwitchPi board.

This is a overview:

Intelligenter Power Switch Overview

Electronic Board Raspberry Pi
Microcontroller ATtiny44

5Voltto Pi

—> >

5Voltin
Kommunication

C-Pr .
Artinyad GPIOPinPULSE | Pynon serpt

System Overview

Intelligent Power Switch Seite 5

https://www.pi-supply.com/
http://www.instructables.com/id/Raspberry-Pi-Shutdown-Button/
https://lowpowerlab.com/shop/ATXRaspi-R2
https://www.yepkit.com/products/ykrud

4. Problem Statement

First step is always an thorough analysis of all the requirements.
[tried the following description in plain sentences:

There is a small pushbutton to switch the Pi on and off. Is the Pi switched off a short press on the pushbutton swit-
ches on the 5 Volt Power for the Pi and the led blinks fast. If the Pi does not come on (,running’) power is again cut
after a wait time of about 30 sec.

If the Pi comes up we have normal operation, 5 volt power stays on and the led is fully on.

A short press on the pushbuttons signals to the Pi to shutdown and activates a timer. The led blinks slow. Power is
cut after the timer reaches a predefined value.

A long press on the pushbutton signals the Pi to reboot - power stays on in this case.

Additionally: if the system waits for the Pi to come up a another short press on the button directs the system on keep
power on without checking whether Pi is running.

If the Pi-Pin suddenly goes to low (Pi not running), the System starts the power down sequence.

That covers situations where the Pi Pi is shutdown in a terminal window.

Such a prosa description ist not very good and usually not complete. Sentences are misleading and there might be
ambiguity.

That is where Finite State Machines come to the rescue. A state diagram together with a state table describes the
machine completely and the transfer to C code is easy. A finite state machine has defined inputs, states, transistions
and also defined outputs.

l Clock
Inputs Intelligent Outputs
Power Switch
—_— . IS
Machine
4.1 Additional Requirements
These are additional requirements for the iSwitchPi Board:
. One ON-/OFF-Switch (Pushbutton) on top of the board.
. An additional ON-/OFF-Switch (Pushbutton) sideways - in case the top switch is not reachable due to sta-
cking.
. A pin-connector for an external ON-/OFF-Switch (Pushbutton) and external led. In case the Pi is in an enclo-
sure.
o 5 Volt Input via Barrel Jack 5.5/2.1 mm or via UBS-Micro connector and also via the pin-connector.
J 5 Volt supply to the Pi via solder bridge. Can be taken out for other requirements (There are Pi-hats on the
market that require that 5 Volt is supplied through them.
. Cutouts for camera-connector and display-connector not neded in first versions.

Intelligent Power Switch Seite 1

. Protection against overvoltage (on Input) and reverse polarity to be added in later versions.

4.2 State-Diagram

After several tries the following state diagram with 7 states was found:

Zustands-Diagramm S /MMW\
Intelligenter Power Switch \)
1ISwitchPi ~

Signature gesetzt und Power failure switch ON

§ (automatic power on)
Signature NICHT

gesetzt

Kurzer
Tastendruck

1
Stand By

Keine Pulse vom
Pi bekommen

7
TestMode
Griine LED ein

5 Volt zum Pi aus
Griine LED pulse
blinken

Pulses aus (Orange Led blinken
falls Pulse von Pi
kommen)

Kurzer
Tastendruck und
Testmode gesetzt

Kurzer
Tastendruck

6
Last Chance

(Check if reboot) Verwendet bei

Installation zur

2
Vorlaufig
PowerON
5 Volt zum Pi ein

Pritfung ob Python
. Srcipt im Pi ok lauft.
min. 3 Pulse

von Pi erhalten Timer abgelaufen
(reboot)

Pulses ein

Langer Tastendruck
Timer abgelaufen Kurzer Tastendruck

mind. 3 Pulse
von Pi erhalten

5
Aktivieren

PowerOFF 3
Griine LED blink langsai Kurzer/Langer Tastendruck Definitv
Set Timer PowerON 1

oder
Signatur I5schen Keine Pulse von Pi bekommen

Griine LED ein
Set Pulse ein
Signatur schreiben

4
Definitv
PowerON 2
Griine Led ein
Set Pulse ein
(Pulse von Pi nicht
prifen)

(Pulse von Pi

ller Z:
K Spezieller Zustand

Ohne Check auf
Pulses vom Pi
(kann mal hilfreich
sein)

Version 5

Peter K. Boxler, March 2017

Kurzer Tastendruck

State Diagram iSwitchPi

4.3 Input and QOutput of the machine

These tables define all inputs and outputs (each input can be one or zero)

Iiput Shortform Source

Short Keypress KT Pushbutton

Long Keypress LT Pushbutton (>1.5 sec)
TimerSignal TS Timer reaches defined count
SignalFromPi SPi Pulses from Pi received
Output Shortform What is this

5 Volt for Pi 5V 5 Volt power to PI on or off
Green Led on Ledon/Ledoff Led is on or off

Led blink slow Ledsl Led blinks slow

Led blink fast Ledfst Led blinks fast

Signal to Pi for Reboot StPireb Send one single pulse to Pi
Signal to Pi for Shutdown StPishut Send 2 pulses to Pi

Intelligent Power Switch Seite 2

Start Timer

STo or STf

On /Off (means start/stop Timer)

Pulsgenerator

ON/OFF

Puls Generation ON/OFF

4.4

State Diagram

The state diagram describes the workings of finite state machine completely. The transfer to a c-program is simple.
A certain state combined with a combination of input signals leads to a new state as shown in state diagram.

State Inputs Next State

SK LK TS SPi ™
1 Stand by 1 X X X X 2 Tentative Power On
1 Stand by 1 X X X 7 Test Mode
2 Tentative Power On X X 0 1 3 Power On-1
2 Tentative Power On X X 1 0 1 Stand by
2 Tentative Power On 1 X X X 4 Power On-2
3 Power On-1 0 0 X 0 5 Activate Power Off
3 Power On-1 1 0 X 0 5 Activate Power Off
3 Power On-1 0 1 X 0 5 Activate Power Off
4 Power On-2 1 X X X 5 Activate Power Off
5 Activate Power Off X X 1 0 1 Stand by
5 Activate Power Off X 1 X X 1 Stand by
6 Last Chance X X X 0 1 Stand by
6 Last Chance X X X 1 3 Power On
7 Test Mode X 1 Stand by

4.5 Activities upon entering a state

Every state of the machine usually has some entry-actions associated with this state. These actions are executed

once upon entering the state and they usually result in changes in the outputs.

State

Activity on Input

1 Stand by

5 Volt Power off

Set Led to Pulse blink
Timer stop
Pulsgenerator stop

2 Tentative Power On

5 Volt Power On
Green Led blink fast
Timer start
Pulsgenerator start

3 Power on-1 (normal operation)

Green Led full on
Timer stoppen

4 Power on-2 (spezieller Betrieb)

Green Led full on
Timer stoppen

5 Activate Power Off

Green Led blink slow
Timer start

6 Last Chance

nothing

7 Test Mode

5 Volt Power On
Green led full on

5. Component A:

Electronics

Intelligent Power Switch Seite 3

The iSwitchPi implements the on / off function of the Pi power supply in software and hardware. The state diagram
and the state tables define the c-program to be created for the ATtiny44. The Pi itself will send regular pulses by
means of a script (see below), which signal: | am still alive, do not turn off the power.

5.1 Schema

The hardware component of the iSwitchPi is designed to be in the form of a raspberry hat. Usage is simple: stack on
top of the Pi, connect a 5 volt power supply and you are ready to run. Additional hats can be stacked on top of the
iSwitchPl.

The electrical scheme of the iSwitchPi looks like this.

5 Volt Power to the Pi is switched on/off with a High-Side Switch MCP2505. This clever device has a voltage drop of
only around 15 mV in the ON state. It handles up to 2 Amps. It is controlled by the MCU. The input voltage of 5V
is reduced to 3.3 V for the microcontroller using a LM1171MP-3.3 module. Thus, the communication line for the Pi
is also addressed with this level (GPIO pins for the Pi are rated 3.3 v max).

The Python script running in the Pi (iswitchpi.py) signals ,| am alive’ with pulses on a selected GPIO-Pin. The script
can, however, also receive signals from the iSwitchPi on the same GPIO-Pin: the number of incoming pulses deter-
mine the type of the command which is sent to the OS: shutdown halt or reboot.

The heart of iSwitchPi is an ATtiny44 microcontroller.

C program (firmware) for the microcontroller, see later.

Note:

Future version of the iSwitchPi need to include a protection against wrong polarity and overvoltage. This will be the
same circuit as on the Raspberry board. See this text for details:

Raspberry voltage protection.

1 2 3 4 [5 & 7 | g
N FJ_ oY 5 Uolt IN
. . u
Intelligent ON-OFF Switch N- ~
for Raspberry Pi e R | s B
iSwitchPi Uer 2 elect Frequency - & volt dn : .
1111 a5 [2fF it
[-
S £ oazem = e
] B S 3“‘.5 e e 1uf 1 len oo |2 <HATE
N s B b Al L5 rectin sy
T : o e ;Eur Jo be connected
- = SN
egulator 2.2 Uslt 2l || e
Fea] - = 2
B B
I+
and” | k2 .)
Lri1171 I

q
PCINTA8/INT/ 0CQ A CKOUTIPE 2

]
LnLizL LT
H VT B
£}
z

SPCINTS#KTAL2)PEL
PEINTE/KTALL/TLKDPER

PCINTZ]
+ PCINTE O
o UCC (RCINTSDE18 1150
. CPLINTA STL/ECL,
ﬁHg PCINT3/ TEAFOCDPAZ
2h2 PEINT2/ATHLAADE2)PA2
CPEINTAAINGADCLPAL

6HD CRCINTE/AREF rADCaRRE [
|| o
n3
oHe 320
D ‘*I;
Opticnal QNADFF

[
% By
- & of] —‘
&% Lo,
£ ;F?érm ¢ [Enteliigent Pover Sultch for Pi =
2 [isuitchpihat
86.91.17 18:67 [Peter K. Boxler
Sheet: 1/1 [Rev:s
T =z = I z = E I z I El
Schema iSwitchPi

5.2 Printed Circuit Board

Intelligent Power Switch Seite 4

https://learn.adafruit.com/introducing-the-raspberry-pi-model-b-plus-plus-differences-vs-model-b/power-supply

The output of the Eagle PCB program is a board-file. This file is sent to (in my case) to

Eurocircuits

and this company will fabricate the printed circuit board. The first batch of 10 prototype boards cost about 90 Euros.
Notes on the board:

The Attiny sits in a 14-pol socket. There is no ICSP-Connection on the board and the MCU is plugged from the
socket if reprogramming is needed.

PCB iSwitchPi

5.3 Puls Generator

In addition to the on-off switching functionality, the iSwitchPi circuit also supplies a variable frequency square wave
(Duty Cycle ca. 10%). This can be used to interrrupt the Pi for other purposes.

J fixed frequencies selectable with dip-switch 0.2/0.5/1/5/10/50/100/500 Hz
The GPIO-Pin is also selectable with a 4-pos dip-switch. GPIO-Pins 17,22, 23 or 27 are available.

5.4 Communication between Pi and Electronic

The Python script described below basically creates a 50ms pulse on the defined GPIO pin every second. These
pulses signal to the iSwitchPi: | am still alive. That GPIO-PIn is routed to an input pin on the ATtiny44.

The program in ATtiny44 is always listening on that input, in order to receive these pulses. If no pulses are received,
it is assumed that the Pi is no longer running or is in a reboot process. The power-off sequence is then initiated.

If the pushbutton is pressed (short or long for shutdown or reboot, respectively), the Attiny sends pulses to the Pi (on
the same line): one pulse means shutdown, two pulses are reboot.

These pulses, however, are sent only after a pulse from the Pi has arrived - only at this point in time it is known that
the Pi is listening.

Intelligent Power Switch Seite 5

http://www.eurocircuits.de

The following scheme will illustrate the communication between Python script and c-program in the ATtiny44.

Intelligent Power Switch iSwitchPi Pi sends one pulse every second
signaling I am alive
Communication iSwitchPi is always listening except after a keypress.

. . o X Only one communcation line needed (one GPIO Pin on the Pi)
Signals between Pi and iSwitchPi

7 7 7 7
Pi listens / Pi listens % / Pi listens //

Signal from Pi

Signal from iSwitchPi | | | |

% iSwitchPi listens / iSwitchPi sends % iSwitchPi listens /

/

Pulses delayed until One pulse for Shutdown halt
Version 2 Asynchronous keypress Pi is again listening Two pulses for reboot
Peter K. Boxler, Januar 2016 (short or long)
Comunication

5.5 C-Program for ATtiny44

The executable for the Attiny44 is compiled/linked from two C programs:
. Implementation of the Finite State Machine with 7 states (iswitchpi.c)

J Implementation of the puls generator using Timer 1 (square.c)

The use of the I/O pins of the ATtiny is documented in the source code. The C program implements the finite machi-
ne with 7 states according to the state table. The push button for triggering the various functions is debounced with
C code by Peter Dannegger. His code is published and discussed on Mikrocontroller.net. It works great, but is not
easy to understand. | added an additional key_clear () function. This makes it easier to synchronize the push-button
with the states. The ATtiny44 needs to run at 1 Mhz, the Makefile specifies this clock frequency. So make sure the
fuses are set to 62 DF FF (default values).

There are also good tutorials for programming AVR microcontrollers in Mikrocontroller.net.
The code of the C program is available on GitHub
Flashing the executable to the ATtiny44 see further down.

Intelligent Power Switch Seite 6

iSwitchPi stacked on a Pi 2 Modell B

6. Component B: Python Shutdown Script

The electronics communicates with a small Python script that is running in the Pi. That script is started at boot time
(Entry in /etc/rc.local).

The clever thing here is that only on GPIO-Pin is used for this 2-way communication. See comm-diagramm for
details.

The Python script is started at boot time with the follwing line added to /etc/rc.local. (replace folder myservices with
your own folder within pi home:

python /home/pi/myservices/iswitchpi.py [-d N] [-p nn] &

Two commandline parms are accepted: -d for debugoptions and - p for selection of GPIO Pin used. Both are optio-
nal.

. 0: No debug uutput (quiet)
. 1: simple debug out, is default value

. 2: Full debug output for testing.

Commandline parm -p specifies the GPIO pin to be used for communication with the iswitchPi board. This must
correspond to the Pin selected with the dip-switch on the board!

. no parm -p: by default GPIO-Pin 20 is used.

. Possible values (pins) - p 13 or-p 19 or -p 26 or- p 20

7. GPIO Pins used

Only one GPIO pin is required for the basic function of the iSwitchPi (Power On / Off). If you want to use the Pulse
function, a second GPIO pin is necessary.

Intelligent Power Switch Seite 7

. Communication between the iSwitchPi board and the pythonscript iswitchpy.py in the Pi. The desired pin
number is selected on the board using the 4-pol. dip switch, GPIO pins 13, 19, 20 and 26 are available.
The pin must also be defined in the Pythonscript. By default, the script uses the pin GPIO 20 (physical pin
number 38). A different (above-mentioned pin) can be defined by means of the command line parameter -d.
See above.

o If the pulse function of the iSwitchPi board is used, a further GPIO pin is necessary. The desired pin number
is selected on the board by means of the 4-pol. pip switch. GPIO pins 17, 22, 23 and 27 are available. Use
the same pin in your script that uses the interrupt.

8. Install iSwitchPi

Read the Quick Start Guide to iSwitchPi (English und German). The document details the installation procedure.
Note

Install starts with installing the Python script iswitchpi.py in the Raspberry Pi. This script needs to run ok prior to
stacking the board onto the Pi. However, without an oscilloscope is it somewhat difficult to see whether the pulses
sent from the script reach the correct GPIO pin on the board. For this reason, the board can be put in TestMode by
setting dip-switch 4, position 1 to ON. In this mode the board acts as a visualizer to check the pulses. Only if the
pulses are verified the board will work ok.

Check out the Quick Start Guide.

9. Test Setup

This is the breadboard use to develop iSwitchPi.

Test Setup iSwitchPi on a Breadboard (ohne Pi)

10. Programming the ATtiny44

| developed the code for iSwitchPi on a Mac. The toolchain used is

CrossPack for AVR Development .

This package installs the following components:

o tThe compiler avr-gcc with all the neccesary libraries

Intelligent Power Switch Seite 8

https://www.obdev.at/index-de.html

. The Commandline-Uploader AVRDUDE

I built a small board with a zero-force socket to flash the MCU. This board connects to the programmer Olimex
AVR-ISP-MK2 with itself is connected to the Mac with a USB cable.

Flashing is done with uploader AVRDUDE - the makefile does this with the command make flash.

Programmer for ATtiny44

Note zu CrossPack Version:
On a Mac OSX 10.9 (and higher) one needs to install AVRDUDE Version 5.11.1. Version 6.01 does not work with
Olimex ISPMK2. Check out these discussions:

http://www.avrfreaks.net/forum/olimex-isp-mk2-error-mac-0sx-109

http:/www.avrfreaks.net/comment/1011406#comment-1011406

That is why | have installed CrossPack-AVR-20121203.

11. Components on the PCB

Intelligent Power Switch Seite 9

http://www.avrfreaks.net/forum/olimex-isp-mk2-error-mac-osx-109
http://www.avrfreaks.net/comment/1011406#comment-1011406

Dip Switch 1 left Dip Switch1right Dip Switch 3

Select Frequency

lSWltChPl Components Select GPIO-Pin for Select GPIO-Pin for "
p N " o of Timer Pulse
Timer Pulse Pi Communication (set switches as follows)
(set one switch to ON) (set one switch to ON)
)) 12 3 FREQUENCY
. 1 Pin11,GPIO17 5 Pin33,GPIO13 OFF OFF OFF No pulses generated

Connector to Pi (2x20) 2 Pin13,GPI0 27 6 Pin35,GPIO 19 ON OFF OFF 1 Hz

3 Pin15,GPIO 22 7 Pin37,GPIO 26 ON OFF ON 10 Hz

4 Pin16,GPIO 23 8 Pin 38, GPIO 20 ON ON OFF 50 Hz

ON ON ON 100 Hz

Power Failure Option

ON: Auto-Power on Pi
OFF: No automatic power up

Barrel Jack 5.5/2.1 mm
5VoltIn

Solder bridge
leave open if 5 Volt out
is NOT to be supplied

directly to Pi
. ! Test Points
Alternate On-Off / L left: Pulses from Python script
Pushbutton right: pulses for IR
(Optional)

MCU ATtiny44 (1 Mhz)

Signal Out/In /

External Led
External On-Off Pushbutton
Alternate 5 Volt In

Dip Switch 3

c
§
= £
= 3
N) .
P Configuration
S ®® DT
g § £E 1 OFF: normal, ON TestMode
255 8 2 OFF:normal wait time, ON: short wait time (Pi 3)
3 ON: enable onboard orange led
1 11 1 4 ON: enable onboard green led
lxtlcro-USBSB\r/eTklout Board On-Off
ter.nate oltin Pushbutton Led Green (On-Off) Led Orange (Pulse)
(Optional)

Peter K. Boxler, Dec. 2016

Components on the iSwitchPi Board

12. Conclusion

The attempt to formulate the problem description by means of a Finite State Machines has cost a lot of effort, but
has made the solution much clearer. Writing the C program was relatively simple since state diagram and the state
tables define everything. There were no serious logical problems with the program flow during testing.

What again confirms the old truth of sytems engineering; think first, code later.

13. Updates

In April of 2017 an update was made to the firmware in the ATtiny44. A user requested an auto-power-on functio-
nality: the Pi should restart unattended (meaning without the need to press the ON-pushbutton) when 5 Volt comes
back after a power failure. State 0 was added to the state diagram and position 4 of dip-switch 3 is used to select/
deselect this feature.

14. Links

My Raspberry Projects
Projekt-Website

Source Code iSwitchPi incl. Eagle Files
GitHub

Intelligent Power Switch Seite 10

http://projects.descan.com
https://github.com/dakota127/iswitchpi

Other Links
Initial State Raspberry Pi GPIO Pins

Raspberry Foundation

About Finite State Machines

http://www.mikrocontroller.net/articles/Statemachine

Tutorials for AVR Mikrocontroller

http://www.mikrocontroller.net/articles/AVR-Tutorial

Eagle PCB Design Software

http://www.cadsoft.de

The Best Resource on the Web
https://www.adafruit.com

In der CH zu empfehlen, fiihrt Adafruit Produkte

http:/www.play-zone.ch

15. Attachments

15.1 Example Scripts fiir iSwitchPi

Folder sources/examples on GitHub contains 2 Python Scripts, one of which shows how the square-wave output of

iSwitchPi can be used in a Python script with an interrupt handler.

. Script example-interrupt.py shows, how a led can be blinked using an interrupt-handler. This, of course, can

be done without interrupts but having an external source for periodic interrupts make this easy.

o Script example-sighandler.py shows how to gracefully terminate a Python script - eg. after ctrl-c or a kill sig-
nal is used. Sometimes on wishes to reset GPIO pins before terminating. This is one way of doing it.

15.2 Parts List iSwitchPi

Part Value Package Note Supplier PartNumber
Condensator

C1 1uF SMD1206 ceramic Any

c2 1uF SMD1206 ceramic Any

C3 1uF SMD1206 ceramic Any

C4 1uF E2,5-6E Any

C5 1uF SMD1206 ceramic Any

IC

IC1 MCU ATTINY44 DIL14 Attiny

Ic2 MIC2025-1YM S008 High-Side Switch

LM117 LM1171MP-3.3 S0T223 3.3 Volt Regulator | Distrelec 110-38-693

Intelligent Power Switch Seite 11

https://www.raspberrypi.org/documentation/configuration/pin-configuration.md
http://www.mikrocontroller.net/articles/Statemachine
http://www.mikrocontroller.net/articles/AVR-Tutorial
http://www.cadsoft.de
https://www.adafruit.com
http://www.play-zone.ch

Led

LED1 green SMD 1206 SMD 1206

LED2 orange SMD 1206 SMD 1206

Resistor

R1 100k 0204/7 Any

R2 10k 0204/7 Any

R3 320 0204/7 Any

R4 320 0204/7 Any

R6 10k 0204/7 Any

R7 320 0204/7 Any

R8 1k 0204/7 Any

R9 80 Nur bei MIC2445A

DIP-Switch

S2 DIP04S Dip 4-Pol Any

S3 DIPO8S Dip 8-Pol Any

S4 DIP04S Dip 4-Pol Any

Pin Header

J1 1X02 Onboard green
Led On/Off

J2 1X02 without Pi

JP1 2X04 Input/Output

JP3 1X01 Optional 5 V IN

TestPins 1X02 TestPins

JP5 1X01 5V to Pi, connect
to JP6

JP6 1X01 5V to Pi, connect
to JP5

JP7 extra long pins 2X20-BIG GPIO Stacking Adafruit 2223
Header

Pushbutton

S1 6x6 mm B3F-10XX Pushbutton On/Off | Adafruit 367/1490/

P00000256
P00000681

Other

IC-Socket 14-pol for ATtiny44 Any

5 Volt IN

PB3 2.1MMJACK Barrel Jack Adafruit 373
5.5/2.1 mm

PB4 ADAUSBMICRO USB-Micro-Brea- | Adafruit, Play-Zo- | 1833/P00001025
kout ne

Only if High-Side

Switch is

MIC 2445A

R8 80 0204/7 Any

Optional, second
Pushbutton On/Off

Intelligent Power Switch Seite 12

PB1 Button liegend Pushbutton On/Off | Distrelec 135-75-923
off-(on) 1P, 6A52-
F4HOAE, Eledis
Montage
Standoff 4 Pieces 11mm/2.5mm Adafruit 2336
15.3 Code iSwitchPi
A snippet of the c-code implementing the Finite State Machine:
// ---- Main Loop. forever --------————————————-
// ---- Implements State Machine -----------—--——-
for(; ;)
{
// _delay_ms(10); // for testing
switch (state) {
/:‘: __ :':/
/* state 0 Initial State State */
/* 1is entered upon 5 volt Power on */
/* check if Pi auto power-on is selected (dip Switch) */
/* if NO --> goto state 1 */
/* 1if YES --> goto state 2 */
/:‘: __ :':/
case state0:
if (first_time & (1<<STATO_FIRST)) { // first_time time throu ?
first_time =0xff; // set first_time all other states
first_time &= ~(1<<STATO_FIRST); // clear first_time this state
}
tick2=0;
pastpulses=0; // pulse counter reset (pulses from Pi)
if ('(PINB & (1<<AUTO_POWER))) // check if auto power on is required (dip switch Pos 4 ON)
state=state?2; // if YES: next state is state 2
else
state=statel; // if NO: next state is state 1
break;
/:‘: __ :':/
/* state 1 Stand-by State, all is off, waiting for short keypress */
/* Power to Pi ist off, led blinks short pulses */
/* waiting for short keypress */
/:‘: __ :':/

case statel:

if (first_time & (1<<STAT1_FIRST)) {
PORTA &= ~(1<<LED1l | 1<<VPOWER);
key_clear(1<<KEYO);
bTinkwhat=PULSED_BTink;
tick2=0;
b1inkon=1;
pwm_stop() ;

output on PA5

pastpulses=0;
first_time =0xff;
first_time &= ~(1<<STAT1_FIRST);

}
if (get_key_short(1<<KEYO)) {
if (! (PINA & (1<<TESTPIN)))
state=state7;
else
state=state2;

break;

/* state 2 Tentative Power on, waiting for
/* Power to Pi ist on, led is blinking fast

// first_time time throu ?
// all outputs off

// stop pulse genaration

// pulse counter reset (pulses from Pi)
// set first_time all other states
// clear first_time this state

// get debounced keypress
// if Testpin is low: signalling TESTMODE
// next state is state 7

// next state is state 2
// leaving standby

Pi to come up */

Intelligent Power Switch Seite 13

/* Short keypress switches to state 4 (power on without checking */
/* whether Pi is on) *

case state2:

if (first_time & (1<<STAT2_FIRST)) { // first_time time throu ?
PORTA |= (1<<VPOWER); //switch 5 volt power on
poweron_delay=POWERON_DeTlay_Tlong;
if ('(PINA & (1<<DELAYTIME))) {
poweron_delay=POWERON_Delay_short; // check pin PA6 for delay times (Dip-
switch 4 Pos 2 ON)
}

b1inkwhat=REGULAR_BTink;
b1inkint=POWERON_B1ink_int;

tick2=0; //start timer

sekunde=0;

pwm_start(Q); // start pulse generati-
on output on PA5

first_time =0xff; // set first_time all other states

first_time &= ~(1<<STAT2_FIRST); // clear first_time this state

}

pwm_check();

if ((blinkwhat>0) && (sekunde > poweron_delay)) {
bTinkwhat=0;

state=statel; // Pi did not come on, so gaback to stand by
}
if (get_key_short(1<<KEYO)) { // get debounced keypress short

b1inkwhat=0;
state=state4;

// how many pi pulses have we received ? if we have Pi is alive
// so we go to state 3 (normal operation state)
if (pastpulses > 3) {state=state3;}

break;

e LT P */
/ state 3 Power ON Number 1, regular operating state */

/* Power to Pi ist on, led 1is on */
/* Loss of signal from Pi changes state to 5 */
/* Short keypress signals Pi to shut down, changes state to 5 */
/ Long Keypress signals Pi to reboot, stays in state 3 */
/o o s */

case state3:
if (first_time & (1<<STAT3_FIRST)) { // first_time time throu ?
PORTA |= (1<<LED1); // led full on
b1inkwhat=0;
key_clear(1<<KEYO0);

first_time =0xff; // set first_time all other states
first_time &= ~(1<<STAT3_FIRST); // clear first_time this state
pwm_check(); // check various inputs for frequency of
pulse on PA5
if (get_key_short(1<<KEYO)) { // get debounced keypress short
cliQ;
sendnow=1; // set flag so IR handler can send signal
sei(); // Interrupt enable
state=state5; // next state 5

poweroff_delay=POWEROFF_Delay_HALT_Tlong; // Poweroff delay for halt
if (I(PINA & (1<<DELAYTIME))) {

poweroff_delay=POWEROFF_Delay_HALT_short; // check pin PA6 for delay times (Dip-
switch 4 Pos 2 ON)
b
}
if(get_key_Tong(1<<KEYO)) { // get debounced keypress long
cliQ;
sendnow=2; // set flag so IR handler can send signal
seiQ); // Interrupt enable
state=state5; // next state 5

// Pi will reboot
poweroff_delay=POWEROFF_Delay_REBOOT_long; // Poweroff delay for halt
if (I(PINA & (1<<DELAYTIME))) {
poweroff_delay=POWEROFF_Delay_REBOOT_short; // check pin PA6 for delay times (Dip-
switch 4 Pos 2 ON)
b

Intelligent Power Switch Seite 14

SIEIEIEEESS

// check numer of pulses from Pi, zero means: Pi is not alive

if (pastpulses < 2)
state=state5;

{

// ok, start power off sequence

poweroff_delay=POWEROFF_Delay_HALT_Tlong; // Poweroff delay for halt

}
break;
__ :':/
state 4 Power ON Number 2, special operating state */
we do not care about pulses from Pi */
Power to Pi ist on, led is on */
Short keypress signals Pi to shut down, changes state to 5 */
__ %/
case state4:
if (first_time & (1<<STAT4_FIRST)) { // first_time time throu ?
PORTA |= (1<<LED1); // led full on
b1inkwhat=0;
key_clear(1<<KEYO0); // ignore keypresses that might have come
first_time =0xff; // set first_time all other states
first_time &= ~(1<<STAT4_FIRST) ; // clear first_time this state
}
pwm_check(); // Pulse generation
// Check DIP-Switch (PINBO to PINB2)
if (get_key_short(1<<KEYO)) { // get debounced keypress short
cliQ;
sendtopi(1); // set flag so IR handler can send signal
seiQ); // Interrupt enable
state=state5;
_delay_ms(10);
poweroff_delay=POWEROFF_Delay_HALT_long; // Poweroff delay for halt
}
break;
__ %/
state 5 Activate Power off, prepare to shut off */
irrelevant of signals from Pi */
Power to Pi ist still on, led is blinkng sTow */
Short keypress changes to state 4 (keep power on regardless */
of signal from Pi) */
Long keypress switches off immediately (goto state 1) */
goto stand by state if timer runs out */
__ %/
case state5:
if (first_time & (1<<STAT5_FIRST)) { // first_time time throu ?
b1inkwhat=REGULAR_BTink; // set Ted to blink
b1inkint=POWEROFF_BTink_int;
key_clear(1<<KEYO0); // ignore keypresses that might have come
pastpulses=0;
tick2=0; //start timer
sekunde=0;
first_time =0xff; // set first_time all other states
first_time &= ~(1<<STATS5_FIRST) ; // clear first_time this state
// pwm_check () ; // Pulse generation
// Check DIP-Switch (PINBO to PINB2)
if (get_key_short(1<<KEYO)) { // get debounced keypress short
state=state3;
}
if(get_key_Tong(1<<KEYO)) { // get debounced keypress long
state=statel; // next state 5
// Pi will reboot
}
removed this - not in state diagram
// check signal from Pi, how many pulses have we received
if (pastpulses > 4) { // Pi seems to ba alive, ok keep power on
state=state3;
}
// wait for POWEROFF_Delay sec before switching off 5 volt supply
if ((blinkwhat>0) && (sekunde > poweroff_delay)) {
b1inkwhat=0;
state=state6; // next state 1is state 5
}
break;
__ %/

Intelligent Power Switch Seite 15

/* state 6 Last Chance (check if Pi rebooted) */
/* we are about to switch 5 volt power off */
/* but before we do that we check the signal from Pi again : */
/* If further pulses came in (Pi rebooted) we keep power on */
/* If no more pulses came in we go to state 1 */
/:‘: __ :':/
case state6:
first_time =0xff; // set first_time all other states
key_clear(1<<KEYO);
// check signal from Pi
if (pastpulses > 3) {
state=state3;
}
else state=statel;
break;
/7': __ :“:/
/* state 7 TESTMODE only */
/* Power to Pi is switched on, green led is on */
/* orange Led blinks every 3 seconds IF and only if pulses from pi */
/* are ok received. */
/* Short keypress: next state is statel (off) */
/7': __ :“:/
case state7:
if (first_time & (1<<STAT7_FIRST)) { // first_time time throu ?
PORTA |= (1<<VPOWER); //switch 5 volt power on
PORTA |= (1<<LED1l); // led full on
b1inkwhat=0;
key_clear(1<<KEYO0);
tick2=0; //start timer
sekunde=0;
blink_led();
first_time =0xff; // set first_time all other states
first_time &= ~(1<<STAT7_FIRST) ; // clear first_time this state
}
if (get_key_short(1<<KEYO)) { // get debounced keypress short

state=statel;

}

// check signal from Pi blink orange led when 2 pulses have been received

if (pastpulses > 2)
b1link_led();
pastpulses=0;

b

//---- End of Switch Statement

Ende des Dokumentes.

Peter K. Boxler, Februar 2016
Updated April 2017

{

Intelligent Power Switch Seite 16

Intelligent Power Switch Seite 17

Intelligent Power Switch Seite 18

Intelligent Power Switch Seite 19

	1.	Abstract
	2.	First Ideas
	2.1	Market Review
	2.2	Findings

	3.	Overwiew
	4.	Problem Statement
	4.1	Additional Requirements
	4.2	State-Diagram
	4.3	Input and Output of the machine
	4.4	State Diagram
	4.5	Activities upon entering a state

	5.	Component A: Electronics
	5.1	Schema
	5.2	Printed Circuit Board
	5.3	Puls Generator
	5.4	Communication between Pi and Electronic
	5.5	C-Program for ATtiny44

	6.	Component B: Python Shutdown Script
	7.	GPIO Pins used
	8.	Install iSwitchPi
	9.	Test Setup
	10.	Programming the ATtiny44
	11.	Components on the PCB
	12.	Conclusion
	13.	Updates
	14.	Links
	15.	Attachments
	15.1	Example Scripts für iSwitchPi
	15.2	Parts List iSwitchPi
	15.3	Code iSwitchPi

